Название шины для видеокарты

Описание всех компонентов и разъемов видеокарты

Основные компоненты видеокарты

Вот основные компоненты, которые присутствуют во всех видеокартах.

Графический процессор

Память HBM быстрее, занимает меньше места на печатной плате и имеет меньшее энергопотребление по сравнению с памятью GDDR5. Вы можете прочитать полное сравнение всех этих видеопамяти видеокарт, перейдя по приведенной ниже ссылке.

Количество регуляторов напряжения на видеокарте варьируется от карты к карте. Некоторые видеокарты имеют большее количество VRM по сравнению с другими. VRM может быть очень горячим, а иногда даже более горячим, чем графический процессор, и им требуется хорошее охлаждение, чтобы видеокарта не выключилась.

Кулер

Каждая видеокарта поставляется с кулером, чтобы поддерживать температуру графического процессора, видеопамяти и VRM на более безопасном уровне. Кулеры видеокарты могут быть активными или пассивными. При активном охлаждении кулер имеет радиатор и вентилятор (HSF), тогда как при пассивном охлаждении кулер имеет единственный радиатор.

В большинстве видеокарт используется активное охлаждение, поскольку обычно оно требует меньше места и обеспечивает лучшее охлаждение, особенно при разгоне, тогда как пассивное охлаждение обычно используется в графических процессорах начального уровня и менее мощных и работает совершенно бесшумно. Но есть несколько хороших видеокарт среднего уровня, которые также поставляются с пассивным кулером или только с радиатором. Кроме того, не рекомендуется разгонять вашу видеокарту с помощью решения для пассивного охлаждения, поскольку оно имеет ограниченную охлаждающую способность.

Слева с активным, а справа с пассивным охлаждением

Количество вентиляторов, используемых в системе активного охлаждения, зависит от производителя видеокарты. Некоторые высокопроизводительные видеокарты также поставляются с жидкостным/водяным охлаждением или гибридным охлаждением. Вы можете узнать больше о решениях для охлаждения видеокарт, перейдя по приведенной ниже ссылке.

Печатная плата

Основные разъемы видеокарты

Вот различные разъемы, которые вы можете найти в видеокарте. Некоторые разъемы встречаются только в видеокартах среднего и высокого класса, а некоторые присутствуют во всех видеокартах.

Разъем PCI Express x16

6-контактные и 8-контактные разъемы PCI-E

Дисплейные порты/разъемы

Слот SLI и CrossFire

Источник

Эволюция шин для видеокарт: от ISA до PCIe

В далеком 1981 году создатели IBM PC и подумать не могли о том, что всего через двадцать пять лет компактные домашние компьютеры смогут выдавать практически фотореалистичную картинку с миллионами полигонов, а игровые миры раскинутся на тысячи виртуальных километров.

Интересно, что сказал бы Герман Холлерит (Herman Hollerith), узнав, что основанная им компания по изготовлению перфокарт и счетных машин в очередной раз оказалась у истоков наших ретро-исследований?

От простого к сложному

В 1981 году компания IBM представила первый в мире персональный компьютер — IBM PC. В нем использовалась допотопная видеокарта с возможностью вывода монохромного изображения, но не это главное. Все наше внимание приковано к шине Industry Standard Architecture (ISA), разработанной в недрах IBM. Основное назначение ISA — соединение периферийных компонентов с системой.

Шина ISA использовалась далеко не только (и даже не столько) для нужд видеокарт. Сторонние производители выпустили массу дополнительных устройств для расширения возможностей компьютера. Оно и понятно, ведь тогда в системную плату не устанавливали звуковой кодек, сетевой контроллер и т.д. Все это можно было реализовать лишь с помощью карт расширения. Сами по себе ISA-порты не сильно отличались от более привычных PCI-разъемов.

Предшественниками полноценных видеокарт были чипы с возможностью вывода спрайтов на экран. Графические возможности компьютеров в те времена не волновали людей: когда IBM представила первый в мире чип с поддержкой вывода нескольких цветов, люди и не поняли, зачем это нужно. Графические карты для интерфейса ISA в середине 1980-х выпускали компании Cirrus Logic, Avance Logic, ATI, S3.

EISA заткнула за пояс шину MCA от IBM и стала стандартом де-факто.

Изначально у шины ISA было много ограничений: недостаточная пропускная способность, малое число прерываний, система распределения питания не ахти. Заменить ISA должна была шина Micro Channel Architecture (MCA), представленная в 1987 году вместе с компьютером IBM PS/2. Новая разработка решила многие проблемы, свойственные ISA: частота шины поднялась до 10 МГц, появился вменяемый Plug-n-Play (до этого прописывать новое устройство в систему приходилось вручную), шина стала 32-битной. Теоретическая пропускная способность MCA достигала 66 Мб/с, на практике — максимум 40 Мб/с. Устройства наконец-то могли общаться друг с другом напрямую, минуя центральный процессор. С такими улучшениями MCA могла бы стать индустриальным стандартом, но IBM сама все испортила. Компания не стала развивать рынок периферии для новой шины, более того, тщательно тормозила этот процесс — сторонние производители должны были получать специализированный ID для каждого устройства, за право выпуска устройств под MCA нужно было платить лицензионные отчисления и роялти. И это при том, что IBM не получила патенты на шину.

История сохранила лишь несколько упоминаний о видеокартах под MCA. Очевидно, что производители испугались всех трудностей, связанных с лицензированием и получением ID. Да и стоило ли мучиться? Компьютеры с шиной MCA оказались значительно дороже аналогов с использованием ISA. Все большей популярностью пользовались системы от Dell, Research Machines и Olivetti. Самые известные дискретные видеокарты для MCA — это монструозные IBM XGA, XGA-2, несколько моделей от Infotronic, Actix и ATI. Кстати, примерно в то же время появился разъем VGA (D-sub) для подключения мониторов.

Видеокарта ATI Mach32 для шины VLB едва помещалась в корпуса того времени. Да-да, и тогда выпускали громадные видеокарты.

Производителям компьютеров основательно поднадоела политика IBM. В итоге они объединились и начали работать над альтернативным стандартом. Альянс AST Research, Compaq, Epson, Hewlett-Packard, NEC, Olivetti, Tandy, WYSE и Zenith Data Systems шутливо назвали «Бандой девяти». Результаты их труда обозначились уже в 1988 году, когда партнеры представили 32-битную шину Extended Industry Standard Architecture (EISA). Она обладала всеми преимуществами MCA, но при этом представляла собой лишь надстройку над классической ISA, что позволило сохранить совместимость с 8- и 16-битными компонентами. Лицензия на шину стоила копейки.

Внешне порты EISA были похожи на 16-битные разъемы ISA — они точно так же были разделены на части для сохранения совместимости. С точки зрения производителей, шина EISA не сильно отличалась от оригинальной ISA, так что и видеокарт с ее поддержкой было выпущено предостаточно.

Надстройка продлила жизнь ISA, но в начале 1990-х была представлена шина VESA Local Bus (VL-bus, VLB). За ее разработку ответственна всем известная ассоциация Video Electronics Standards Association (VESA), основанная NEC в середине 1980-х годов. Почему бы не успокоиться на время и не продолжить использование EISA? Все просто — производителям опять не хватало скорости. Решением стала совершенно неудобная по современным меркам «добавка» в виде PCI-образного порта, который располагался в один ряд с 16-битным разъемом ISA, таким образом продлевая его. Устройство с поддержкой VLB устанавливалось сразу в два разъема — порт VLB обслуживал обращения к памяти, а ISA обрабатывал прерывания. Топорное решение, ничего не скажешь.

Несмотря на все недостатки, VLB стала стандартом де-факто в компьютерах с процессорами Intel 80486. Многочисленные производители видеокарт представили длинные модели с двумя разъемами.

В 1991 году ATI выпустила видеокарту Mach 8, которая могла обрабатывать картинку без помощи процессора. Уже в 1992 году последовала Mach 32 с возможностью ускорения обработки графического интерфейса Windows. Начались первые войны за рынок графики. В стычках участвовали S3, Cirrus Logic, ATI, PowerVR, Rendition и более мелкие игроки. На горизонте замаячили трехмерные пространства и аппаратное ускорение графики.

Читайте также:  Ремонт акпп 01n цена

Назад в будущее

Проследив за компьютерным рынком, Intel решила взять все в свои руки и начала работу над шиной Peripheral Component Interconnect (PCI). Intel подошла к вопросу со всей серьезностью и организовала специальную группу для продвижения стандарта — PCI Special Interest Group (PCI-SIG). В нее вошли представители наиболее крупных IT-компаний.

Карта расширения с четырьмя дополнительными разъемами ISA. Такие устройства использовали, когда доступных портов уже не хватало.

Финальные спецификации PCI 1.0 были готовы к 1993 году. В серверах новый интерфейс заменил и EISA, и MCA. Захват рынка настольных компьютеров произошел не сразу — на тот момент люди были вполне довольны возможностями VLB. С появлением мощных процессоров Pentium недостатки шины стали очевидны — пользователям не давали жить постоянные помехи, наводки от оборудования и испорченные данные на жестких дисках.

В один прекрасный момент Intel представила процессор Pentium Pro в паре с новым чипсетом, в нем место VLB не нашлось. Да, вот так просто компания взяла, да и убрала разъем. Силовые наклонности Intel проявляются и по сей день, ведь именно она форсировала переход на Serial ATA, ратовала за отказ от PS/2 в пользу USB. Что интересно, интерфейс EISA тогда сохранили — соответствующие разъемы оставались на платах еще довольно долго.

К выходу Pentium II в 1995 году PCI-SIG представила спецификации PCI 2.0 (33 МГц). В новой версии была решена проблема прерываний и определения установленных устройств — под эти цели отвели дополнительный канал связи. Периферия могла свободно обращаться к памяти, выделять для себя необходимые участки, а технологию Plug-n-Play довели до ума.

Участники PCI-SIG не почивали на лаврах и продолжали работу над стандартом — в последующие годы появились ревизии 2.1, 2.2 и даже 3.0. Самая ходовая версия PCI обладала пропускной способностью 133 Мб/с. Тем временем на рынке видеокарт только разгоралась борьба за место под солнцем. Производители работали над реализацией аппаратного ускорения 3D-графики. Ярчайшие представители той эпохи — разновидности S3 ViRGE и первый комбинированный 2D/3D графический ускоритель ATI Rage. Не выдержав конкуренции, рынок видеокарт начали покидать различные компании. Многие из них — например, Cirrus Logic — перепрофилировались и успешно существуют до сих пор.

Разъемы PCI Express даже внешне не похожи на PCI, от одноименного предшественника остались лишь воспоминания.

Все описанные тогдашние модели использовали интерфейс PCI — до поры до времени он обеспечивал достаточную пропускную способность. История шины как идеального интерфейса для видеокарт стала подходить к концу с появлением на рынке компаний 3Dfx и NVIDIA. К 1997 году последняя представила сравнительно мощную Riva 128, ATI продолжила развивать Rage, а 3Dfx выпустила легендарные 3D-акселераторы Voodoo и Voodoo 2. Несмотря на то, что шина PCI позволяла вытворять фокусы, вроде установки двух Voodoo 2 и объединения их в режим SLI, пропускной способности стало не хватать. И снова на арену вышла Intel.

Главное уязвимое место шины PCI заключается в том, что 133 Мб/с делятся между всеми установленными устройствами. Стало быть, для требовательной графической карты нужен обособленный разъем. На разработку Accelerated Graphics Port (AGP) ушло немного времени. Первую версию интерфейса представили вместе с процессорами Pentium II для Slot 1. Шина AGP 1x обеспечила пропускную способность до 266 Мб/с. Впервые соединение с процессором было прямым — их «общению» никто больше не мешал. Появилась дополнительная адресация, которая позволила видеокартам посылать новый запрос во время получения уже заказанных данных.

Первая волна видеокарт под AGP не заставила себя долго ждать. В числе пионеров были Rendition Verite V2200, 3dfx Voodoo Banshee, NVIDIA RIVA 128, 3Dlabs PERMEDIA 2, Intel i740, ATI Rage, Matrox Millennium II и S3 ViRGE GX/2. Разумеется, многие из них при работе задействовали переходной мост.

В дальнейшем Intel совершенствовала шину AGP — появились AGP 2x, AGP 4x и AGP 8x. Каждая новая версия отличалась от предыдущей еще большей пропускной способностью и улучшенными электротехническими характеристиками. AGP 8x обладала внушительной пропускной способностью 2133 Мб/с. Достигнуть этого предела производители видеокарт не успели, по команде Intel индустрия двинулась дальше.

На протяжении всей истории человечества всегда находились провокаторы в хорошем смысле слова, выдумщики и просто светлые головы. Люди, которые никогда не сидели на месте и старались привнести в мир что-то новое. Встречайте одного из таких — Чета Хита (Chet Heath).

Этот сотрудник IBM с тридцатилетним стажем отвечал за разработку многих ключевых компонентов, которые в том или ином виде присутствуют в компьютерах и по сей день. В нашей статье мы затронули сразу два из них — шину MCA и технологию Plug-n-Play. Подобных ему в IBM называют «дикими утками» (wild duck), и именно они вращают колесо прогресса.

Хит пока является единственным сотрудником IBM, дважды получившим награду компании за технологические достижения! Зная, какое влияние оказал «Голубой гигант» на компьютерную индустрию, можно предположить, что Чету мы обязаны многим.

В июне 2000 года Хит покинул родные пенаты. Стало тесно — руководство компании не захотело принимать в оборот предлагаемую им серверную технологию, а раз так, надо двигать дальше. В данный момент наш герой трудится в роли технологического директора на славу компании OmniCluster. Посмотрим, что еще он явит миру.

Задел на будущее

Переход на PCI Express вызвал немало вопросов. К моменту появления интерфейса в 2004 году многие лишь недоуменно поднимали бровь — зачем нужна пропускная способность порядка 4 Гб/с, если видеокарты до сих пор не используют всех возможностей AGP 8x? И зачем возвращаться к PCI?

Уже потом люди узнали, что от PCI-архитектуры в PCI Express осталось только название, шина таит в себе много новых возможностей. Так, инновационный интерфейс вернул позабытую технологию 3Dfx SLI в виде подретушированных NVIDIA SLI и ATI CrossFire. Как обычно, при переходе на новую шину широко использовали переходные мосты. История повторяется вот уже который раз, и с каждым новым витком она становится все интереснее!

Источник

VJ Железо

При смене одной только видеокарты обязательно нужно учитывать, что новые модели могут просто не подходить к вашей материнской плате, так как существует не просто несколько разных типов слотов расширения, но несколько их версий (применительно к AGP, и в скором времени — к PCI Express). Если вы не уверены в своих знаниях по этой теме, внимательно ознакомьтесь с разделом.

Как мы уже отметили выше, видеокарта вставляется в специальный разъем расширения на системной плате компьютера, через этот слот видеочип обменивается информацией с центральным процессором системы. На системных платах чаще всего есть слоты расширения одного-двух (реже трёх) разных типов, отличающихся пропускной способностью, параметрами электропитания и другими характеристиками, и не все из них подходят для установки видеокарт. Очень важно знать имеющиеся в системе разъемы и покупать только ту видеокарту, которая им соответствует. Разные разъемы расширения несовместимы физически и логически, и видеокарта, предназначенная для одного типа, в другой не вставится и работать не будет.

Мы не будем касаться ISA и VESA Local Bus слотов расширения и соответствующих им видеокарт, так как они безнадежно устарели, и не каждый специалист ныне знает о них что-то большее, чем их названия и то, что они когда-то существовали. Обойдем вниманием и слоты PCI, так как игровых видеокарт для них давно уж нет.

Читайте также:  Поменять вентиль для шины

Современные графические процессоры используют один из двух типов интерфейса: AGP или PCI Express. Эти интерфейсы отличаются друг от друга в основном пропускной способностью, предоставляемыми возможностями для питания видеокарты, а также другими менее важными характеристиками. Теоретически, чем выше пропускная способность интерфейса, тем лучше. Но практически, разница в пропускной способности даже в несколько раз не слишком сильно влияет на производительность, и пропускная способность интерфейса крайне редко является узким местом, ограничивающим производительность.

Лишь очень малая часть современных системных плат не имеет слотов AGP или PCI Express, единственной возможностью расширения для них является интерфейс PCI, видеокарты для которого весьма редки и попросту не подходят для домашнего компьютера. Рассмотрим два современных интерфейса подробнее, именно эти слоты вам нужно искать на своих системных платах. Смотрите фотографии и сравнивайте.

AGP (Accelerated Graphics Port или Advanced Graphics Port) — это высокоскоростной интерфейс, основанный на спецификации PCI, но созданный специально для соединения видеокарт и системных плат. Шина AGP лучше подходит для видеоадаптеров по сравнению с PCI (не Express!) потому, что она предоставляет прямую связь между центральным процессором и видеочипом, а также некоторые другие возможности, увеличивающие производительность в некоторых случаях, например, GART — возможность чтения текстур напрямую из оперативной памяти, без их копирования в видеопамять; более высокую тактовую частоту, упрощенные протоколы передачи данных и др.

В отличие от универсальной шины PCI, AGP используется только для видеокарт. Интерфейс имеет несколько версий, последняя из них — AGP 8x с пропускной способностью 2.1 Гб/с, что в 8 раз больше начального стандарта AGP с параметрами 32-бит и 66 МГц. Новых системных плат с AGP уже не выпускают, они окончательно уступили рынок решениям с интерфейсом PCI Express, но AGP до сих пор имеет широкое распространение и дает достаточную пропускную способность даже для новых видеочипов.

Спецификации AGP появились в 1997 году, тогда Intel выпустил первую версию описания, включающую две скорости: 1x и 2x. Во второй версии (2.0) появился AGP 4x, а в 3.0 — 8x. Рассмотрим все варианты подробнее:
AGP 1x — это 32-битный канал, работающий на частоте 66 МГц, с пропускной способностью 266 Мбайт/с, что в два раза выше полосы PCI (133 Мбайт/с, 33 МГц и 32-бит).
AGP 2x — 32-битный канал, работающий с удвоенной пропускной способностью 533 Мбайт/с на той же частоте 66 МГц за счет передачи данных по двум фронтам, аналогично DDR памяти (только для направления «к видеокарте»).
AGP 4x — такой же 32-битный канал, работающий на 66 МГц, но в результате дальнейших ухищрений была достигнута учетверенная «эффективная» частота 266 МГц, с максимальной пропускной способностью более 1 ГБ/с.
AGP 8x — дополнительные изменения в этой модификации позволили получить пропускную способность уже до 2.1 ГБ/с.

Видеокарты с интерфейсом AGP и соответствующие слоты на системных платах совместимы в определенных пределах. Видеокарты, рассчитанные на 1.5 В, не работают в 3.3 В слотах, и наоборот. Но существуют универсальные разъемы, которые поддерживают оба типа плат. Некоторые новые видеокарты из последних AGP серий, такие как NVIDIA GeForce 6 серии и ATI X800, имеют специальные ключи, не позволяющие установить их в старые системные платы без поддержки 1.5 В, а последние AGP карты с поддержкой 3.3 В — это NVIDIA GeForce FX 5×00 и часть из ATI RADEON 9×00, кроме основанных на R360.

При апгрейде старой AGP системы обязательно нужно учитывать возможную несовместимость разных версий слотов AGP. Бывает, что никаких проблем не возникает, но перед модернизацией видеосистемы стоит ознакомиться со статьей:

Краткая выжимка из этой статьи: новые видеокарты в старые системные платы можно пробовать вставлять без особого риска, в крайнем случае, система просто не заработает, в отличие от попытки установки старых видеокарт на новую материнскую плату, что может иметь печальные последствия. Для установки новых видеоплат на устаревшую системную, имеющую разъема AGP 1.0, нужно, чтобы новая видеокарта имела универсальный разъем AGP 1.0/2.0:

Но если новая видеокарта имеет разъем AGP 2.0, то заставить ее работать на старой системе не получится.

AGP 3.0 видеокарты имеют такой же разъем, как показан выше, и их можно устанавливать на материнские платы со слотом AGP 2.0. Существуют и видеокарты AGP 3.0 с универсальным разъемом, которые можно устанавливать в том числе и на системную плату с портом AGP 1.0.

Несмотря на то, что версии AGP действительно сильно отличаются друг от друга по теоретическим показателям, таким, как пропускная способность, более старый и медленный интерфейс тормозить работу видеокарты будет не сильно, разница в производительности в играх при режимах AGP 4x и AGP 8x составляет лишь несколько процентов, а то и еще меньше:

NVIDIA GeForce4 Ti 4200 with AGP8x (NV28) и GeForce4 MX 440 with AGP8x (NV18)

Посмотрите — теоретическая разница в пропускной способности отличается в два раза, но практические результаты тестов показывают отсутствие значительного преимущества AGP 8x решений по сравнению с AGP 4x вариантами.

Нужно отметить, что в переходный период смены слотов AGP на PCI Express выходили системные платы с гибридными решениями, предоставляющими так называемые слоты AGP Express. Эти слоты зачастую размещались совместно с PCI Express x16 слотом, но они не являются полноценными AGP слотами и работают на скорости обычных PCI слотов, что дает очень низкую скорость, позволяющую разве что переждать время перехода на полноценное PCI Express решение.

Про подобный продукт можно прочитать в статье:
Тестирование AGP-Express в исполнении ECS

Вообще же, видеокарты, рассчитанные на морально и физически устаревший слот AGP, в наших статьях не рассматриваются, поэтому мы ограничимся лишь написанным выше текстом и ссылкой на последние тесты AGP видеокарт на iXBT.com.

PCI Express

PCI Express (PCIe или PCI-E, не путать с PCI-X), ранее известная как Arapaho или 3GIO, отличается от PCI и AGP тем, что это последовательный, а не параллельный интерфейс, что позволило уменьшить число контактов и увеличить пропускную способность. PCIe — это лишь один из примеров перехода от параллельных шин к последовательным, вот другие примеры этого движения: HyperTransport, Serial ATA, USB и FireWire. Важное преимущество PCI Express в том, что он позволяет складывать несколько одиночных линий в один канал для увеличения пропускной способности. Многоканальность последовательного дизайна увеличивает гибкость, медленным устройствам можно выделять меньшее количество линий с малым числом контактов, а быстрым — большее.

Интерфейс PCIe пропускает данные на скорости 250 Мбайт/с на одну линию, что почти вдвое превышает возможности обычных слотов PCI. Максимально поддерживаемое слотами PCI Express количество линий — 32, что дает пропускную способность 8 ГБ/с. А PCIe слот с восемью рабочими линиями примерно сопоставим по этому параметру с быстрейшей из версий AGP —. Что еще больше впечатляет при учете возможности одновременной передачи в обоих направлениях на высокой скорости. Наиболее распространенные слоты PCI Express x1 дают пропускную способность одной линии (250 Мбайт/с) в каждом направлении, а PCI Express x16, который применяется для видеокарт, и в котором сочетается 16 линий, обеспечивает пропускную способность до 4 ГБ/с в каждом направлении.

Несмотря на то, что соединение между двумя PCIe устройствами иногда собирается из нескольких линий, все устройства поддерживают одиночную линию, как минимум, но опционально могут работать с большим их количеством. Физически, карты расширения PCIe входят и работают нормально в любых слотах с равным или большим количеством линий, так, PCI Express x1 карта будет спокойно работать в x4 и x16 разъемах. Также, слот физически большего размера может работать с логически меньшим количеством линий (например, на вид обычный x16 разъем, но разведены лишь 8 линий). В любом из приведенных вариантов, PCIe сам выберет максимально возможный режим, и будет нормально работать.

Читайте также:  Фильтр акпп хонда внутри

Чаще всего для видеоадаптеров используются разъемы x16, но есть платы и с x1 разъемами. А большая часть системных плат с двумя слотами PCI Express x16, работает в режиме x8 для создания SLI и CrossFire систем. Физически другие варианты слотов, такие как x4, для видеокарт не используются. Напоминаю, что всё это относится только к физическому уровню, попадаются и системные платы с физическими PCI-E x16 разъемами, но в реальности с разведенными 8, 4 или даже 1 каналами. И любые видеокарты, рассчитанные на 16 каналов, работать в таких слотах будут, но с меньшей производительностью. Кстати, на фотографии выше показаны слоты x16, x4 и x1, а для сравнения оставлен и PCI (снизу).

Хотя разница в играх получается не такой уж и большой. Вот, например, обзор двух системных плат на нашем сайте, в котором исследуется разница в скорости трехмерных игр на двух системных платах, пара тестовых видеокарт в которых работает в режимах 8 каналов и 1 канала соответственно:
http://www.ixbt.com/mainboard/foxconn/foxconn-mcp61vm2ma-rs2h-mcp61sm2ma-ers2h.shtml

Интересующее нас сравнение — в конце статьи, обратите внимание на две последние таблицы. Как видите, разница при средних настройках весьма небольшая, но в тяжелых режимах начинает увеличиваться, причем, большая разница отмечена в случае менее мощной видеоплаты. Примите это к сведению.

PCI Express отличается не только пропускной способностью, но и новыми возможностями по энергопотреблению. Эта необходимость возникла потому, что по слоту AGP 8x (версия 3.0) можно передать не более 40 с небольшим ватт суммарно, чего уже не хватало видеокартам последних поколений, рассчитанных для AGP, на которых устанавливали по одному или двух стандартным четырехконтактным разъемам питания (NVIDIA GeForce 6800 Ultra). По разъему PCI Express можно передавать до 75 Вт, а дополнительные 75 Вт получают по стандартному шестиконтактному разъему питания (см. последний раздел этой части). В последнее время появились видеокарты с двумя такими разъемами, что в сумме дает до 225 Вт.

PCI Express 2.0

Не так давно, группой PCI-SIG, которая занимается разработкой соответствующих стандартов, были представлены основные спецификации PCI Express 2.0. Вторая версия PCIe вдвое увеличивает стандартную пропускную способность, с 2.5 Гб/с до 5 Гб/с, так что разъем x16 позволяет передавать данные на скорости до 8 ГБ/с в каждом направлении. При этом PCIe 2.0 совместим с PCIe 1.1, старые карты расширения будут нормально работать в новых системных платах, появление которых ожидается уже в 2007 году.

Спецификация PCIe 2.0 поддерживает как 2.5 Гб/с, так и 5 Гб/с скорости передачи, это сделано для обеспечения обратной совместимости с существующими PCIe 1.0 и 1.1 решениями. Обратная совместимость PCI Express 2.0 позволяет использовать прошлые решения с 2.5 Гб/с в 5.0 Гб/с слотах, которые просто будут работать на меньшей скорости. А устройство, разработанное по спецификациям версии 2.0, может поддерживать 2.5 Гб/с и/или 5 Гб/с скорости.

Основное нововведение в PCI Express 2.0 — это удвоенная до 5 Гб/с скорость, но это не единственное изменение, есть и другие нововведения для увеличения гибкости, новые механизмы для программного управления скоростью соединений и т.п. Нас больше всего интересуют изменения, связанные с электропитанием устройств, так как требования видеокарт к питанию неуклонно растут. В PCI-SIG разработали новую спецификацию для обеспечения увеличивающегося энергопотребления графических карт, она расширяет текущие возможности энергоснабжения до 225/300 Вт на видеокарту. Для поддержки этой спецификации используется новый 2×4-штырьковый разъем питания, предназначенный для обеспечения питанием будущие модели видеокарт.

PCI Express External

И уже в этом году, группа PCI-SIG, занимающаяся официальной стандартизацией решений PCI Express, объявила о принятии спецификации PCI Express External Cabling 1.0, описывающих стандарт передачи данных по внешнему интерфейсу PCI Express 1.1. Эта версия позволяет передавать данные со скоростью 2.5 Гб/с, а следующая должна увеличить пропускную способность до 5 Гб/с. В рамках стандарта представлены четыре внешних разъема: PCI Express x1, x4, x8 и x16. Старшие разъемы оснащены специальным язычком, облегчающим подключение.

Внешний вариант интерфейса PCI Express может использоваться не только для подключения внешних видеокарт, но и для внешних накопителей и других плат расширения. Максимальная рекомендованная длина кабеля при этом равна 10 метров, но её можно увеличить при помощи соединения кабелей через повторитель.

Чем это может быть полезно для видеокарт? Например, это точно может облегчить жизнь любителей ноутбуков, при работе от батарей будет использоваться маломощное встроенное видеоядро, а при подключении к настольному монитору — мощная внешняя видеокарта. Значительно облегчится апгрейд подобных видеокарт, не нужно будет вскрывать корпус ПК. Производители смогут делать совершенно новые системы охлаждения, не ограниченные особенностями карт расширения, да и с питанием должно быть меньше проблем — скорее всего, будут использоваться внешние блоки питания, рассчитанные специально на определенную видеокарту, их можно в один внешний корпус с видеокартой встроить, используя одну систему охлаждения. Должна облегчиться сборка систем на нескольких видеокартах (SLI/CrossFire). В общем, с учетом постоянного роста популярности мобильных решений, такие внешние PCI Express должны завоевать определенную популярность.

В статье мы не трогаем устаревшие интерфейсы, их характеристики действительно сильно влияли на производительность даже в старые времена. Затем производители перешли на производство видеокарт, рассчитанных на интерфейс AGP (Accelerated Graphics Port), но его первой спецификации оказалось недостаточно, AGP 1.0 в некоторых случаях мог ограничивать производительность. Поэтому в дальнейшем стандарт модифицировали, версии 2.0 (AGP 4x) и 3.0 (AGP 8x) уже достигли высоких значений пропускной способности, выше которых скорость просто не росла.

Абсолютное большинство современных видеоплат рассчитано на интерфейс PCI Express, поэтому при выборе видеокарты мы предлагаем серьезно рассматривать только его, все данные о AGP приведены для справки. Хотя производители видеокарт по своей инициативе делают карты среднего уровня для интерфейса AGP (ATI RADEON X1950 PRO, NVIDIA GeForce 7800 GS и 7600 GT) до сих пор, но все они используют специальный мост для трансляции вызовов PCI Express в AGP, а новых видеочипов с поддержкой AGP давно не существует.

Итак, новые платы используют интерфейс PCI Express x16, объединяющий скорость 16 линий PCI Express, что дает пропускную способность до 4 ГБ/с в каждом направлении, это примерно в два раза больше, по сравнению с той же характеристикой AGP 8x. Важное отличие состоит в том, что PCI Express работает с такой скоростью в каждом из направлений, поэтому в некоторых случаях PCI Express может дать преимущества по сравнению с AGP. Но чаще всего пропускной способности стандарта AGP 8x достаточно, и разницы с соответствующими картами для PCI Express просто нет, разные версии видеокарт работают примерно с одной скоростью, что на AGP, что на PCI Express. Например, RADEON 9600 XT и RADEON X600 XT, для AGP и PCI Express, соответственно.

Другое дело, что будущего у AGP давно нет, и этот интерфейс следует рассматривать только с точки зрения апгрейда, все новые системные платы поддерживают только PCI Express, наиболее производительные видеокарты с интерфейсом AGP не выпускаются, а те, что есть, труднее найти в продаже. Если речь о покупке новой платы или одновременной смене системной и видеоплаты, то просто необходимо покупать карты с интерфейсом PCI Express, он будет наиболее распространен еще несколько лет, а его следующая версия будет совместима с нынешней.

Источник

Вопрос - ответ
Adblock
detector